4.9 Antiderivatives

In this section we will introduce the idea of the antiderivative. If we are given the derivative of a function f and we wish to find the original function F, we can take the antiderivative.

Definition: A function F is called an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

For example, let $f(x)=x^{2}$. We can use the idea of the power rule to find the antiderivative of \boldsymbol{f}.

Note: If $F(x)=\frac{1}{3} x^{3}$, then $F^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}=x^{2}=f(x)$.
We could say that this is our solution but we run into a problem because notice that the derivative of the following functions also equal $\boldsymbol{f}(\boldsymbol{x})$:

$$
\begin{aligned}
& G(x)=\frac{1}{3} x^{2}+2 \\
& H(x)=\frac{1}{3} x^{2}+15 \\
& J(x)=\frac{1}{3} x^{2}+2000
\end{aligned}
$$

Notice that we can add any constant to our function and the derivative is still equal to $f(x)$.

All functions in the form of $G(x)=\frac{1}{3} x^{2}+C$, where C is a constant, is an antiderivative of $f(x)$.

Theorem: If F is an antiderivative of f on the interval I, then the most general antiderivative of f on I is $F(x)+C$ where C is an arbitrary constant.

The General Antiderivative Formula is: $\frac{x^{n+1}}{n+1}+C$
Below is a table (found on page 352 of your text) with some of the most commonly used antiderivative that we will encounter. Remember - you must add the constant C at the end of your antiderivative!

Function	Antiderivative	Function	Antiderivative
$\mathrm{c} f(x)$	$\mathrm{cF}(\mathrm{x})$	$\sin (\mathrm{x})$	$-\cos (\mathrm{x})$
$\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$	$\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x})$	$\sec ^{2}(\mathrm{x})$	$\tan (\mathrm{x})$
$\mathrm{x}^{\mathrm{n}}(\mathrm{n} \neq-1)$	$\frac{x^{n+1}}{n+1}$	$\sec (\mathrm{x}) \tan (\mathrm{x})$	$\operatorname{Sec}(\mathrm{x})$
$\frac{1}{x}$	$\ln (\mathrm{x})$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1}(x)$
e^{x}	e^{x}	$\frac{1}{1+x^{2}}$	$\tan ^{-1}(x)$
b^{x}	$\frac{b^{x}}{\ln b}$	$\operatorname{Cosh}(\mathrm{~s})$	$\operatorname{Sinh}(\mathrm{x})$
$\cos (\mathrm{x})$	$\sin (\mathrm{x})$	$\operatorname{Sinh}(\mathrm{x})$	$\operatorname{Cosh}(\mathrm{x})$

