4.9 Antiderivatives

In this section we will introduce the idea of the antiderivative. If we are given the derivative of a function f and we wish to find the original function F, we can take the antiderivative.

Definition: A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

For example, let $f(x) = x^2$. We can use the idea of the power rule to find the antiderivative of *f*.

Note: If
$$F(x) = \frac{1}{3}x^3$$
, then $F'(x) = 3\left(\frac{1}{3}\right)x^2 = x^2 = f(x)$.

We could say that this is our solution but we run into a problem because notice that the derivative of the following functions also equal f(x):

 $G(x) = \frac{1}{3}x^{2} + 2$ $H(x) = \frac{1}{3}x^{2} + 15$ $J(x) = \frac{1}{3}x^{2} + 2000$

Notice that we can add any constant to our function and the derivative is still equal to f(x).

All functions in the form of $G(x) = \frac{1}{3}x^2 + C$, where C is a constant, is an antiderivative of f(x).

Theorem: If F is an antiderivative of f on the interval I, then the most general antiderivative of f on I is F(x) + C where C is an arbitrary constant.

The General Antiderivative Formula is: $\frac{x^{n+1}}{n+1} + C$

Below is a table (found on page 352 of your text) with some of the most commonly used antiderivative that we will encounter. Remember – you must add the constant C at the end of your antiderivative!

Function	Antiderivative	Function	Antiderivative
Cf(X)	cF(x)	sin (x)	-cos(x)
f(x) + g(x)	$\frac{F(x) + G(x)}{x^{n+1}}$	sec ² (x)	tan(x)
	x^{n+1}		
x ⁿ (n≠ -1)	$\overline{n+1}$	sec(x)tan(x)	Sec(x)
1		1	
\overline{x}	ln(x)	$\sqrt{1-x^2}$	$sin^{-1}(x)$
		1	
e ^x	e^x	$\overline{1+x^2}$	$tan^{-1}(x)$
	b^x		
b^x	$\frac{\ln b}{\ln b}$	Cosh(s)	Sinh(x)
$\cos(x)$	sin (x)	Sinh(x)	Cosh(x)